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ABSTRACT
In this paper, we propose a text clustering algorithm using
an online clustering scheme for initialization called FGSD-
MM+. FGSDMM+ assumes that there are at most Kmax

clusters in the corpus, and regards these Kmax potential
clusters as one large potential cluster at the beginning. Dur-
ing initialization, FGSDMM+ processes the documents one
by one in an online clustering scheme. The first document
will choose the potential cluster, and FGSDMM+ will create
a new cluster to store this document. Later documents will
choose one of the non-empty clusters or the potential clus-
ter with probabilities derived from the Dirichlet multinomial
mixture model. Each time a document chooses the poten-
tial cluster, FGSDMM+ will create a new cluster to store
that document and decrease the probability of later docu-
ments choosing the potential cluster. After initialization,
FGSDMM+ will run a collapsed Gibbs sampling algorithm
several times to obtain the final clustering result. Our exten-
sive experimental study shows that FGSDMM+ can achieve
better performance than three other clustering methods on
both short and long text datasets.

Keywords
Text Clustering; Gibbs Sampling; Dirichlet Multinomial Mix-
ture

1. INTRODUCTION
Text clustering [1] is a widely studied problem with many

applications such as document organization, summarization,
and browsing. In [27], we introduced a collapsed Gibbs Sam-
pling algorithm for the Dirichlet Multinomial Mixture mod-
el (GSDMM) for text clustering. GSDMM represents each
cluster as a large document combined by the documents in
the cluster and records the size of each cluster. The proba-
bility of a document belonging to each cluster is proportional
to the size of the cluster and the frequency of each word of
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the document in the cluster. In this way, GSDMM consid-
ers both the size of the cluster and the similarity between
the document and the cluster when assigning a documen-
t to a cluster. GSDMM assumes that there are at most
Kmax clusters in the corpus. This assumption is weaker
than assuming the true number of clusters in the corpus.
Besides, this assumption can certainly be right when we set
the assumed maximum number of clusters Kmax to be the
number of documents in the corpus. During initialization,
GSDMM randomly assigns the documents to Kmax cluster-
s. Then GSDMM traverses the documents for several iter-
ations. For each document, GSDMM re-assigns it to one of
the Kmax clusters according to the probability of the doc-
ument belonging to each cluster derived from the Dirichlet
multinomial mixture (DMM) model [16]. In [27], we found
that GSDMM can achieve good performance as long as the
assumed maximum number of clusters Kmax is larger than
the true number of clusters. However, it is difficult to set
a proper maximum number of clusters for GSDMM as we
do not know the true number. As a result, we may have to
choose a really large Kmax to ensure safety which will re-
sult in the complexity of GSDMM to be large. In addition,
GSDMM randomly assigns the documents to Kmax clusters
during initialization, which will introduce noise into cluster-
ing. Because the documents in an initial cluster have high
probability of coming from different classes.

An observation is that when the assumed maximum num-
ber of clusters Kmax is much larger than the true number
of clusters (such as Kmax is set to be the number of doc-
uments in the corpus), the number of non-empty clusters
Knon drops quickly when we run GSDMM. Actually, the
probability of a document choosing each empty cluster is
the same, and there is no difference which empty cluster
the document chooses. Therefore, we can regard all empty
clusters as a potential cluster, and the probability of a docu-
ment choosing this potential cluster is (Kmax−Knon) times
the probability of that document choosing a specific empty
cluster. In each iteration, each document can choose one of
the Knon non-empty clusters or the potential cluster accord-
ing to its probability of belonging to the Knon + 1 clusters.
We call this new text clustering algorithm as Fast GSDMM
(abbr. to FGSDMM). The time complexity of FGSDMM is
linear to the number of non-empty clusters.

Although FGSDMM can reduce the time complexity of
GSDMM, its space complexity is still linear to the assumed
maximum number of clusters. Besides, the initialization
step of FGSDMM is the same as GSDMM, which will in-



troduce noise into clustering. An observation is that the
initialization approach of FGSDMM wastes much informa-
tion, because it does not consider the differences between the
clusters. Actually, we can estimate the probability of a doc-
ument choosing each cluster as we already know the current
representation of the clusters. Under the above inspiration,
we propose a new initialization approach for FGSDMM us-
ing an online clustering scheme called FGSDMM+. The
space complexity of FGSDMM+ is linear to the number of
non-empty clusters, because it only needs to store the in-
formation of the non-empty clusters. Besides, FGSDMM+
introduces less noise into clustering, because it assigns each
document to a cluster according to the probability of the
document belonging to each cluster.
In the experimental study, we compared FGSDMM+ with

GSDMM [27], K-means [7], and LDA [5]. We found that
FGSDMM+ can achieve better performance than these meth-
ods on both short and long text datasets. We compared the
speed of FGSDMM+, FGSDMM, and GSDMM with differ-
ent assumed maximum number of clusters Kmax. We found
that the speed of GSDMM is approximately linear to the
assumed maximum number of clusters Kmax, and the speed
of FGSDMM+ gets almost stable when the assumed maxi-
mum number of clusters is larger than the true number of
clusters. We also investigated the influence of the parame-
ters to the number of clusters found by FGSDMM+ and the
performance of FGSDMM+.
The contributions of this paper are summarized as follows.

• We proposed a new Gibbs sampling algorithm for the
Dirichlet multinomial mixture model for text cluster-
ing whose time complexity is linear to the number of
non-empty clusters.

• We proposed a text clustering algorithm using an on-
line clustering scheme for initialization which has low
time and space complexity and can detect the number
of clusters automatically.

• We conducted extensive experiments on both short
and long text datasets. Our algorithm can achieve bet-
ter performance than three other clustering methods
on all datasets.

The remainder of this paper is organized as follows. In
Section 2, we first introduce the Dirichlet Multinomial Mix-
ture (DMM) model, then we introduce the GSDMM algo-
rithm. In Section 3, we propose the FGSDMM algorithm
whose time complexity is linear to the number of non-empty
clusters. In Section 4, we propose the FGSDMM+ algorith-
m which uses an online clustering scheme for initialization
and can detect the number of clusters automatically. Sec-
tion 5 describes the design of experiments to evaluate the
performance of our algorithm and the influence of parame-
ters to the algorithm. In Section 6, we review the related
work of text clustering. We finally present conclusions and
future work in Section 7.

2. BACKGROUND
In this section, we will introduce the Dirichlet Multinomial

Mixture (DMM) model [16] and the GSDMM algorithm we
proposed in [27]. In the next two sections, we will point out
the drawbacks of GSDMM and propose two new clustering
algorithms to cope with these drawbacks.

Figure 1: Graphical model of DMM.

Kmax assumed maximum number of clusters
Knon number of non-empty clusters
V size of the vocabulary
D number of documents in the corpus
I number of iterations

d⃗ documents in the corpus
z⃗ cluster assignments of each document
mz number of documents in cluster z
nz number of words in cluster z
nw
z frequency of word w in cluster z

Nd number of words in document d
Nw

d frequency of word w in document d
α pseudo number of documents in each cluster
β pseudo frequency of each word in each cluster

Table 1: Notations

2.1 The DMM Model
The Dirichlet Multinomial Mixture (DMM) model [16] is

a probabilistic generative model for documents, and embod-
ies two assumptions about the generative process: (1) the
documents are generated by a mixture model [15], and (2)
there is a one-to-one correspondence between mixture com-
ponents and clusters. The graphical representation of the
Dirichlet Multinomial Mixture (DMM) model is shown in
Figure 1 (Table 1 shows the notations used in this paper),
which is equivalent to the following generative process:

Θ|α ∼ Dir(α) (1)

zd|Θ ∼Mult(Θ) d = 1, ..., D (2)

Φk|β ∼ Dir(β) k = 1, ...,K (3)

d|zd, {Φk}Kk=1 ∼ p(d|Φzd) (4)

Here, “X ∼ S” means “X is distributed according to S”,
so the right side is a specification of distribution. When
generating document d, the Dirichlet Multinomial Mixture
(DMM) model first selects a mixture component (cluster) zd
for document d according to the mixture weights (weights
of clusters), Θ, in Equation 2. Then document d is gener-
ated by the selected mixture component (cluster) from dis-
tribution p(d|Φzd) in Equation 4. The weight vector of the
clusters, Θ, is generated by a Dirichlet distribution with a
hyper-parameter α, as in Equation 1. The cluster parame-
ters Φz are also generated by a Dirichlet distribution with a
hyper-parameter β, as in Equation 3.

In this paper, the probability of document d generated by



cluster zd is defined as follows:

p(d|Φzd) =
∏
w∈d

Mult(w|Φzd) (5)

Here, we make the Naive Bayes assumption: the words in a
document are generated independently when the document’s
cluster assignment zd is known. We also assume that the
probability of a word is independent of its position within
the document.

2.2 The GSDMM Algorithm
In this part, we give the derivation of the collapsed Gibbs

sampling algorithm for the Dirichlet Multinomial Mixture
(DMM) model, which is different from the one presented

in [27]. The documents d⃗ = {di}Di=1 are observed and the
cluster assignments z⃗ = {zi}Di=1 are latent. The conditional
probability of document d choosing cluster z given the in-
formation of other documents and their cluster assignments
can be factorized as follows:

p(zd = z|z⃗¬d, d⃗, α, β)

∝ p(zd = z|z⃗¬d, d⃗¬d, α, β)p(d|zd = z, z⃗¬d, d⃗¬d, α, β) (6)

∝ p(zd = z|z⃗¬d, α)p(d|zd = z, d⃗z,¬d, β) (7)

Here, we use the Bayes Rule in Equation 6, and apply the
properties of D-Separation [4] in Equation 7.
The first term in Equation 7 indicates the probability of

document d choosing cluster z when we know the cluster as-
signments of other documents. The second term in Equation
7 can be considered as a predictive probability of document

d given d⃗z,¬d, i.e., the other documents currently assigned
to cluster z.
The first term in Equation 7 can be derived as follows:

p(zd = z|z⃗¬d, α)

=

∫
p(zd = z,Θ|z⃗¬d, α)dΘ (8)

=

∫
p(Θ|z⃗¬d, α)p(zd = z|z⃗¬d,Θ, α)dΘ (9)

=

∫
p(Θ|z⃗¬d, α)p(zd = z|Θ)dΘ (10)

=

∫
Dir(Θ|m⃗¬d + α⃗)Mult(zd = z|Θ)dΘ (11)

=

∫
1

∆(m⃗¬d + α⃗)
Θz

K∏
k=1,k ̸=z

Θ
mk,¬d+α−1

k dΘ (12)

=
∆(m⃗+ α⃗)

∆(m⃗¬d + α⃗)
(13)

=

∏K
k=1 Γ(mk + α)

Γ(
∑K

k=1(mk + α))

Γ(
∑K

k=1(mk,¬d + α))∏K
k=1 Γ(mk,¬d + α)

(14)

=
Γ(mz,¬d + α+ 1)

Γ(mz,¬d + α)

Γ(D − 1 +Kα)

Γ(D +Kα)
(15)

=
mz,¬d + α

D − 1 + α
(16)

Here, Equation 8 exploits the Sum Rule of Probability [4].
We use the Product Rule of Probability [4] in Equation 9
and apply the properties of D-Separation in Equation 10.
The posterior distribution of Θ is a Dirichlet distribution,
because we assumed Dirichlet prior Dir(Θ|α) for the Multi-
nomial distribution Mult(z⃗|Θ). In Equation 13, we adopt

the ∆ function used in [11], which is defined as ∆(α⃗) =∏K
k=1 Γ(α)

Γ(
∑K

k=1
α)
. Using the property of Γ function: Γ(x + 1) =

xΓ(x), we can get Equation 16 from Equation 15. In E-
quation 16, mz,¬d is the number of documents in cluster z
without considering document d, and D is the total num-
ber of documents in the dataset. Equation 16 indicates that
document d will tend to choose larger clusters when we only
consider the cluster assignments of the other documents.

Then, we derive the second term in Equation 7 as follows:

p(d|zd = z, d⃗z,¬d, β)

=

∫
p(d,Φz|zd = z, d⃗z,¬d, β)dΦz (17)

=

∫
p(Φz|zd = z, d⃗z,¬d, β)p(d|Φz, zd = z, d⃗z,¬d, β)dΦz

(18)

=

∫
p(Φz|d⃗z,¬d, β)p(d|Φz, zd = z)dΦz (19)

=

∫
Dir(Φz|n⃗z,¬d + β)

∏
w∈d

Mult(w|Φz)dΦz (20)

=

∫
1

∆(n⃗z,¬d + β)

V∏
t=1

Φ
nt
z,¬d+β−1

z,t

∏
w∈d

Φ
nw
d

z,wdΦz (21)

=
∆(n⃗z + β)

∆(n⃗z,¬d + β)
(22)

=

∏V
t=1 Γ(n

t
z + β)

Γ(
∑V

t=1(n
t
z + β))

Γ(
∑V

t=1(n
t
z,¬d + β))∏V

t=1 Γ(n
t
z,¬d + β)

(23)

=

∏
w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)∏Nd

i=1(nz,¬d + V β + i− 1)
(24)

Here, Equation 17 exploits the Sum Rule of Probability [4].
We use the Product Rule of Probability in Equation 18 and
apply the properties of D-Separation [4] to obtain Equation
19. The posterior distribution of Φz is a Dirichlet distribu-
tion, because we assumed Dirichlet prior Dir(Φz|β) for the

Multinomial distribution Mult(d⃗z|Φz). Because the Γ func-

tion has the following property: Γ(x+m)
Γ(x)

=
∏m

i=1(x+ i− 1),

we can get Equation 24 from Equation 23. In Equation 24,
Nw

d and Nd are the number of occurrences of word w in
document d and the total number of words in document d,
respectively, and Nd =

∑
w∈d N

w
d . Besides, nw

z,¬d and nz,¬d

are the number of occurrences of word w in cluster z and
the total number of words in cluster z without considering
document d, respectively, and nz,¬d =

∑V
w=1 n

w
z,¬d. We can

notice that Equation 24 actually evaluates some kind of sim-
ilarity between document d and cluster z, and document d
will tend to choose a cluster whose documents share more
words with it.

Finally, we have the probability of document d choosing
cluster zd given the information of other documents and
their cluster assignments as follows:

p(zd = z|z⃗¬d, d⃗, α, β)

∝ (mz,¬d + α)

∏
w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)∏Nd

i=1(nz,¬d + V β + i− 1)
(25)

The first part of Equation 25 relates to Rule 1 of GSDMM
(i.e., choose a cluster with more documents), as it will have
larger value when mz,¬d (number of documents in cluster



z without considering document d) is larger. This is also
known as the “richer gets richer” property, which will lead
larger clusters to get larger [24]. The second part of Equa-
tion 25 relates to Rule 2 of GSDMM (i.e., choose a cluster
which is more similar with the current document), which ac-
tually defines the similarity between the document and the
cluster. It is a product of Nd parts that correspond to the
Nd words in document d. For each word w in document d,
the corresponding part measures the the frequency of word
w in cluster z. When a cluster has more documents that
share same words with document d, the second part of E-
quation 25 will be larger, and document d will be more likely
to choose that cluster.
Most text clustering algorithms [1] represent documents

with the vector space model [21], in which each document is
represented with a vector in length of the size of the vocab-
ulary. Differently, GSDMM represents each document with
its words and the frequency of each word in the document.
GSDMM represents each cluster as a large document com-
bined by the documents in the cluster and records the size of
each cluster. In detail, GSDMM uses three count variables
to record the information of each cluster: nw

z (frequency of
word w in cluster z), nz (number of words in cluster z), mz

(number of documents in cluster z).
GSDMM assumes that there are at most Kmax cluster-

s in the corpus. This assumption is weaker than assuming
the true number of clusters in the corpus. Besides, this as-
sumption can certainly be right when we set the assumed
maximum number of clusters Kmax to be the number of
documents in the corpus. During initialization, GSDMM
randomly assigns the documents to Kmax clusters. Then
GSDMM traverses the documents for several iterations. In
each iteration, GSDMM re-assigns each document to one of
the Kmax clusters according to the probability of the docu-
ment belonging to each cluster computed from Equation 25.
Because the documents tend to choose clusters with more
documents, large clusters will tend to get larger and small
clusters will tend to get smaller. After several iterations,
some clusters will become empty, as a result, GSDMM can
detect the number of clusters automatically.

3. THE FGSDMM ALGORITHM
In [27], we found that GSDMM can achieve good perfor-

mance as long as the assumed maximum number of clusters
Kmax is larger than the true number of clusters. However,
it is difficult to set a proper maximum number of clusters
for GSDMM as we do not know the true number of cluster-
s in the dataset beforehand. As a result, we may have to
choose a really large assumed maximum number of clusters
Kmax to ensure safety which will result in the complexity of
GSDMM to be large.
An observation is that sampling a cluster from the Kmax

clusters for each document wastes much time when the as-
sumed maximum number of clusters Kmax is much larg-
er than the true number of clusters, because most of the
clusters will become empty quickly. For example, when we
set Kmax to be the number of documents in the corpus,
the number of non-empty clusters Knon will decrease really
quickly when we run GSDMM.
Actually, the probability of a document choosing each

empty cluster is the same, and there is no difference which
empty cluster the document chooses. Therefore, we can
regard all empty clusters as a potential cluster, and the

probability of a document choosing this potential cluster
is (Kmax − Knon) times the probability of that documen-
t choosing a specific empty cluster. In each iteration, each
document will choose one of the Knon non-empty clusters or
the potential cluster according to its probability of belonging
to the Knon + 1 clusters.

Algorithm 1: FGSDMM

Data: Documents d⃗, Maximum number of clusters
Kmax.

Result: Cluster assignments of the documents z⃗.
begin

//Initialization
Knon ← Kmax

Zero all count variables for each cluster.
for each document d ∈ [1, D] do

Sample cluster index z for document d as one of
the Kmax clusters with equal probability.
Assign document d to cluster z and update its
count variables.

//Gibbs Sampling
for i ∈ [1, I] do

for each document d ∈ [1, D] do
Record the current cluster of d: z ← zd
Remove document d from cluster z and
update its count variables.
if mz == 0 then

Knon ← Knon − 1
Re-arrange cluster indices so that
1, ...,Knon are non-empty clusters;

Compute the probability of document d
choosing each of the Knon non-empty
clusters or the potential cluster with
Equation 25 and Equation 26, respectively.
Sample cluster index z for document d
according to the above Knon + 1
probabilities.
if z == Knon + 1 then

Knon ← Knon + 1

Assign document d to cluster z and update
its count variables.

The probability of a document choosing one of the Knon

non-empty clusters is shown in Equation 25. We denote
the potential cluster that represent the Kmax−Knon empty
clusters as Knon + 1, and the probability of a document
choosing the potential cluster is as follows:

p(zd = Knon + 1|z⃗¬d, d⃗) ∝

α(Kmax −Knon)

∏
w∈d

∏Nw
d

j=1(β + j − 1)∏Nd
i=1(V β + i− 1)

(26)

We call this new text clustering algorithm as FGSDMM
(abbr. for Fast GSDMM) which is shown in Algorithm 1.
The main difference between FGSDMM and GSDMM is in
the way of assigning a document to a cluster. GSDMM sam-
ples a cluster from the Kmax clusters for each document in
each iteration. This means the time complexity of GSDMM
is linear to the assumed maximum number of clusters Kmax.



Different from GSDMM, the time complexity of FGSDMM
is linear to the number of non-empty clusters.

4. THE FGSDMM+ ALGORITHM
Although FGSDMM can reduce the time complexity of

GSDMM, its space complexity is still linear to the assumed
maximum number of clusters Kmax. Because FGSDMM
needs to store the frequency of each word in each cluster
and the size of each cluster. For text datasets, the size of
the vocabulary is in the order of 105, which means FGSDMM
needs much memory when the assumed maximum number
of clusters Kmax is really large.
In addition, FGSDMM randomly assigns the documents

to Kmax clusters during initialization, which will introduce
noise into clustering. This is because the documents in an
initial cluster have high probability of coming from different
classes.
During initialization, FGSDMM traverses the documents

and randomly assigns each document to one of the Kmax

clusters with equal probability. In detail, the first documen-
t will choose one of the Kmax empty clusters with equal
probability. Later documents will choose one of the Knon

non-empty clusters or one of the Kmax −Knon empty clus-
ters with equal probability.

Algorithm 2: FGSDMM+

Data: Documents d⃗, Maximum number of clusters
Kmax.

Result: Cluster assignments of the documents z⃗.
begin

//Initialization
Knon ← 0
for each document d ∈ [1, D] do

Compute the probability of document d
choosing each of the Knon non-empty clusters or
the potential cluster with Equation 25 and
Equation 26, respectively.
Sample cluster index z for document d according
to the above Knon + 1 probabilities.
if z <= Knon then

Assign document d to cluster z and update
its count variables.

else
Knon ← Knon + 1
Create a cluster to store document d and
initialize its count variables.

//Gibbs Sampling
The Gibbs sampling step of FGSDMM+ is similar
to FGSDMM, except that FGSDMM+ needs to
create a new cluster to store a document when it
chooses the potential cluster.

An observation is that the initialization approach of FGS-
DMM wastes much information, because it does not con-
sider the differences between the clusters. Actually, we can
estimate the probability of a document choosing each clus-
ter as we already know the current representation of the
clusters. Under the above inspiration, we propose a new
initialization approach for FGSDMM using an online clus-

tering scheme. We call this new text clustering algorithm
FGSDMM+ which is shown in Algorithm 2.

Just like FGSDMM, FGSDMM+ assumes that there are
at most Kmax clusters in the corpus. Different from FGS-
DMM, FGSDMM+ does not allocate space for these Kmax

clusters at the beginning. Instead, it regards the Kmax po-
tential clusters as one large potential cluster.

During initialization, FGSDMM+ processes the documents
one by one in an online clustering scheme. The first docu-
ment will choose the potential cluster, and FGSDMM+ will
create a new cluster to store this document. Later docu-
ments will choose one of the Knon non-empty clusters or
the potential cluster with probabilities computed from E-
quation 25 and Equation 26, respectively. Each time a doc-
ument chooses the potential cluster, FGSDMM+ will create
a new cluster to store that document and decrease the prob-
ability of later documents choosing the potential cluster. In
this way, the number of non-empty clusters will grow from
zero to a certain value, and FGSDMM+ can obtain the ini-
tial clustering results. The above initialization approach is
identical to the Chinese restaurant process [18] when the
maximum number of tables is assumed to be Kmax.

After initialization, FGSDMM+ will run a Gibbs sam-
pling algorithm several times to obtain the final clustering
result. The Gibbs sampling step of FGSDMM+ is similar
to FGSDMM, except that FGSDMM+ needs to create a
new cluster to store a document when it chooses the poten-
tial cluster. The space complexity of FGSDMM+ is linear
to the number of non-empty clusters Knon, because it only
needs to store the information of the non-empty clusters.
Besides, FGSDMM+ will introduce less noise into cluster-
ing, because it assigns each document to a cluster according
to the probability of the document belonging to each cluster.

5. EXPERIMENTAL STUDY

5.1 Experimental Setup

5.1.1 Data Sets
We use three real text datasets in the experimental study:

• NG201 . This dataset consists of 18,846 documents
from 20 major newsgroups which is a classical dataset
for the evaluation of text clustering methods. The av-
erage length of the documents in NG20 is 137.85.

• R52. Similar to [6], we removed the documents with
more than one class and the classes with no documents
from the 100 most frequent classes in Reuters-215782

and obtained a dataset consists of 9,100 documents
from 52 classes.

• Tweet893. This dataset consists of 2,472 tweets that
are highly relevant to 89 queries. The relevance be-
tween tweets and queries are manually labelled in the
2011 and 2012 microblog tracks at the Text REtrieval
Conference 4 . The average length of the tweets in this
dataset is 8.56.

1http://qwone.com/˜jason/20Newsgroups/
2http://www.daviddlewis.com/resources/testcollections/
reuters21578/
3https://github.com/jackyin12/GSDMM/
4http://trec.nist.gov/data/microblog.html



Dataset D K V Avg Len
NG20 18,846 20 181,754 137.85
R52 9,100 52 12,608 59.61

Tweet89 2,472 89 5,098 8.56

Table 2: Statistics of the text datasets (D:Number of docu-
ments, K:Number of clusters, V : Vocabulary size, Avg Len:
Average length of the documents)

The preprocessing step includes converting all letters into
lowercase, removing stop words, and stemming. After pre-
processing, the statistics of these text datasets are shown in
Table 2. We can see the average length of the documents
in NG20 and R52 is much larger than that of Tweet89. We
plan to evaluate the performance of the clustering methods
on both short and long texts with these datasets.

5.1.2 Evaluation Metrics
In this part, we introduce the evaluation metrics used in

this paper: Homogeneity (H), completeness (C), and Nor-
malized Mutual Information (NMI). We used the implemen-
tation of these metrics in sklearn5 in the experimental study.
Homogeneity and completeness [20] are two intuitive e-

valuation metric using conditional entropy analysis. Homo-
geneity represents the objective that each cluster contains
only members of a ground true group. Completeness repre-
sents the objective that all members of a ground true group
are assigned to the same cluster. Homogeneity (H) and com-
pleteness (C) scores are formally defined as follows [20]:

H = 1−
∑

c,k nc,k log (
nc,k

nk
)∑

c nc log
nc
N

(27)

C = 1−
∑

c,k nc,k log (
nc,k

nc
)∑

k nk log
nk
N

(28)

where nc is the number of documents in class c, nk is the
number of documents in cluster k, nc,k is the number of
documents in class c as well as in cluster k, and N is the
number of documents in the dataset.
The Normalized Mutual Information (NMI) is widely used

to evaluate the quality of the clustering results. NMI mea-
sures the amount of statistical information shared by the
random variables representing the cluster assignments and
the ground true groups of the documents. Normalized Mu-
tual Information (NMI) is formally defined as follows [23]:

NMI =

∑
c,k nc,k log (

N·nc,k

nc·nk
)√

(
∑

c nc log
nc
N
)(
∑

k nk log
nk
N
)

(29)

where nc is the number of documents in class c, nk is the
number of documents in cluster k, nc,k is the number of
documents in class c as well as in cluster k, and N is the
number of documents in the dataset. When the clustering
results perfectly match the ground true classes, the NMI
value will be one. While when the clustering results are
randomly generated, the NMI value will be close to zero.

5.1.3 Methods for Comparison
We compare FGSDMM+ with the following three cluster-

ing methods:

• K-means. K-means [10] is probably the most widely
used method for clustering. Following [7], we set the

5http://www.scikit-learn.org

similarity metric as cosine similarity. To cope with
the problem of falling into local maximum, we set the
number of initializations at 10 for each run of K-means.

• LDA. We treat the topics found by LDA [5] as clusters
and assign each document to the cluster with the high-
est value in its topic proportion vector. Following [9],
we set α = K/50 and β = 0.1 where K is the number
of topics assumed by LDA.

• GSDMM3. This is a state-of-the-art clustering method
for short text clustering which is actually the collapsed
Gibbs sampling algorithm for the Dirichlet multinomi-
al mixture model. Following [27], we set α = 0.1 and
β = 0.1 for GSDMM.

5.2 Comparison with Existing Methods
In this part, we compare the performance of FGSDM-

M+ with GSDMM [27], K-means [7], and LDA [5]. We will
not report the result of FGSDMM here, because the perfor-
mance of FGSDMM is the same as GSDMM. All algorithms
were implemented in java and conducted on a Linux serv-
er with Intel Xeon E5310 1.60GHz CPU and 19GB memo-
ry. We vary the number of clusters for each dataset. For
FGSDMM+ and GSDMM, they correspond to the assumed
maximum number of clusters. For all algorithms, we set
the maximum number of iterations at 100 (to make a fair
comparison). For each algorithm, we run 20 independent
trials on each dataset, and report the mean and standard
deviation of the NMI of the results in Table 3.

From Table 3, we can see that FGSDMM+ always achieves
the highest performance compared with the other three clus-
tering methods on all datasets. Meanwhile, the standard de-
viations of the 20 independent trials of FGSDMM+ are quite
small which means that FGSDMM+ has high consistency.
An interesting observation is that all methods perform bet-
ter on the short text dataset (Tweet89) than other two long
text datasets (NG20 and R52). One possible explanation
is that Tweet89 is easier for clustering because it is about
events and has smaller vocabulary as shown in Table 2.

5.3 Speed of the Algorithms
In this part, we try to investigate the influence of the

assumed maximum number of clusters Kmax to the speed
of FGSDMM+, FGSDMM, and GSDMM. We set α = 1,
β = 0.05, and the number of iterations at 30 for all datasets.

Figure 2 shows the speed of FGSDMM+, FGSDMM, and
GSDMM with different assumed maximum number of clus-
ters Kmax. We set the number of iterations at 30, and vary
the assumed maximum number of clusters Kmax as differ-
ent times of the true number of clusters in each dataset. We
can see that the speed of GSDMM is approximately linear to
the assumed maximum number of clusters Kmax. Because
GSDMM needs to re-assign each document to one of the
Kmax clusters according to Equation 25 in each iteration.
FGSDMM can improve the speed of GSDMM, however, the
improvement is not obvious on NG20 and R52. The speed
of FGSDMM+ gets almost stable when the assumed maxi-
mum number of clusters is larger than the true number of
clusters.

5.4 Influence of the Number of Iterations
In this part, we try to investigate the influence of the num-

ber of iterations to the number of clusters found by FGSD-



NG20 R52 Tweet89
K 10 20 40 26 52 104 45 89 178

FGSDMM+ .619 ± .007 .662 ± .006 .667 ± .009 .586 ± .008 .587 ± .005 .587 ± .009 .838 ± .012 .860 ± .007 .872 ± .008
GSDMM .614 ± .006 .658 ± .004 .663 ± .007 .577 ± .004 .577 ± .006 .583 ± .007 .834 ± .005 .853 ± .008 .865 ± .004
K-means .235 ± .008 .321 ± .006 .352 ± .005 .333 ± .002 .360 ± .003 .383 ± .005 .692 ± .008 .753 ± .006 .745 ± .005
LDA .584 ± .014 .605 ± .012 .614 ± .012 .493 ± .011 .498 ± .009 .509 ± .012 .773 ± .012 .798 ± .012 .813 ± .013

Table 3: NMI results of the clustering methods.
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Figure 2: Running time of FGSDMM+, FGSDMM, and GSDMM on the three datasets.
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Figure 3: Performance of FGSDMM+ with different number
of iterations.

MM+ and its performance. We set α = 1, β = 0.05, and
Kmax = 2 ∗Ktrue (Ktrue is the true number of clusters) for
all datasets.
Figure 3 shows the performance of FGSDMM+ with dif-

ferent number of iterations. From Figure 3, we can see that
FGSDMM+ can get stable performance within about ten
iterations. This shows that FGSDMM+ is fast to converge.
Another observation is that FGSDMM+ can achieve quite
good performance with only the initialization step on R52
and Tweet89. The initialization approach of FGSDMM+ is
actually an online clustering algorithm which has two prop-
erties: 1) it can process the documents one by one in the
order of arriving; 2) it can detect new clusters which means
it can deal with the problem of concept drift. While the per-
formance of the initialization step of FGSDMM+ on NG20 is
relatively worse, we will try to investigate this phenomenon
in our future study on stream text clustering.
Figure 4 shows the number of clusters found by FGSDM-

M+ with different number of iterations. From Figure 4, we
can see that the number of clusters found by the initializa-
tion step FGSDMM+ is near the true number of clusters in
the datasets. We can also see that the number of clusters
found by FGSDMM+ grows on NG20 and R52, while drops
on Tweet89. This means later iterations of FGSDMM+ can
amend the result of the initialization step.
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Figure 4: Number of clusters found by FGSDMM+ with
different number of iterations.

5.5 Influence of the Assumed Maximum Num-
ber of Clusters

In this part, we try to investigate the influence of the
assumed maximum number of clusters Kmax to the number
of clusters found by FGSDMM+ and its performance. We
set α = 1, β = 0.05, and the number of iterations at 30 for
all datasets.

Figure 5 shows the performance of FGSDMM+ with dif-
ferent assumed maximum number of clusters. We vary the
assumed maximum number of clusters as different times of
the true number of clusters. From Figure 5, we can see that
FGSDMM+ can achieve good performance as long as the
assumed maximum number of clusters Kmax is larger than
the true number of clusters in the datasets.

Figure 6 shows the number of clusters found by FGSD-
MM+ with different assumed maximum number of clusters.
We vary the assumed maximum number of clusters as dif-
ferent times of the true number of clusters. Different from
NG20 and R52, the number of clusters found on Tweet89
grows slightly when Kmax gets larger than the true num-
ber of clusters. One possible explanation is that the average
length of the documents in Tweet89 is only 8.56, which is
quite short compared with that of NG20 (137.85) and R52
(59.61). The influence of the similarity between the doc-
ument and the cluster is relatively small (product of less
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Figure 5: Performance of FGSDMM+ with different maximum number of clusters.
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Figure 6: Number of clusters found by FGSDMM+ with
different maximum number of clusters.
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Figure 7: Number of clusters found by FGSDMM+ with
different values of α.

than nine fractions averagely) on Tweet89, and the “rich-
er gets richer” property becomes relatively more importan-
t. When Kmax gets larger, the probability of a document
choosing the potential cluster gets larger, because there are
(Kmax−Knon)α pseudo documents in the potential cluster.
We also find that FGSDMM+ can achieve good perfor-

mance when the assumed maximum number of clustersKmax

is set to be the number of documents on all the datasets. The
number of clusters found on NG20, R52, and Tweet89 are
around 26, 55, and 192, respectively.

5.6 Influence of Alpha
In this part, we try to investigate the influence of α to

the number of clusters found by FGSDMM+ and its perfor-
mance. We set β = 0.05, Kmax = 2 ∗ Ktrue (Ktrue is the
true number of clusters), and the number of iterations at 30
for all datasets.
Figure 7 and Figure 8 show the number of clusters found

by FGSDMM+ and the performance of FGSDMM+ with d-
ifferent values of α, respectively. An observation is that the

influence of α is similar to the assumed maximum number
of clusters Kmax. The reason is that α is the pseudo num-
ber of documents in each cluster, and the probability of the
document choosing the potential cluster grows when α gets
larger. As the average length of the documents in Tweet89
is only 8.56, the similarity between the document and the
cluster plays a relatively small rule, and the growth of α can
increase the probability of the documents choosing the po-
tential cluster. On the other hand, the number of clusters
found on NG20 and R52 does not grow when we vary α from
0.1 to 2, because the similarity between the document and
the cluster plays a so important rule and the increase of α
cannot effect the choice of the documents.

5.7 Influence of Beta
In this part, we try to investigate the influence of β to

the number of clusters found by FGSDMM+ and its perfor-
mance. We set α = 1, Kmax = 2 ∗Ktrue (Ktrue is the true
number of clusters), and the number of iterations at 30 for
all datasets.

Figure 9 and Figure 10 show the performance of FGSDM-
M+ and the number of clusters found by FGSDMM+ with
different values of β, respectively. From Figure 10, we can
see that the number of clusters found by FGSDMM+ drops
when β gets larger. As we know, β is the pseudo frequen-
cy of each word in each cluster. When β gets larger, the
probability of a document choosing a cluster is less sensitive
to the similarity between the document and the cluster. As
a result, the influence of the “richer gets richer” property
becomes more important, and FGSDMM+ will find fewer
clusters. Although the number of clusters found by FGS-
DMM+ vary a lot when we vary β from 0.01 to 0.1, the
NMI of the results remains relatively high. An explanation
is that FGSDMM+ can achieve larger completeness with
larger β, and can achieve larger homogeneity with smaller
β. In other words, FGSDMM+ can balance completeness
and homogeneity with β.

6. RELATED WORK
General surveys on text clustering can be found in [1],

[2], and [3]. [22] and [28] give experimental comparisons of
different text clustering algorithms.

Partitional algorithms like K-means [10] and K-medoids
[17] find the clusters by partitioning the entire dataset in-
to a pre-determined number of clusters. The advantage of
partitional algorithms is that they are efficient and easy to
implement. The Spherical K-means algorithm [7] is used
extensively for document clustering due to its low computa-
tional and memory requirements. The disadvantages of par-
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Figure 8: Performance of FGSDMM+ with different values of α.
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Figure 9: Performance of FGSDMM+ with different values of β.
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Figure 10: Number of clusters found by FGSDMM+ with
different values of β.

titional algorithms is that they need to specify the number of
clusters in advance, and they are sensitive to initialization.
Hierarchical algorithms [26] recursively find nested clus-

ters either in an agglomerative mode or a divisive mode.
The hierarchical algorithms are particularly useful to sup-
port a variety of searching methods because they naturally
create a tree-like hierarchy which can be leveraged for the
search process [25]. The drawback of hierarchical algorithms
is that they need to assume the true number of clusters or a
similarity threshold, and their time complexity is quadratic
in the number of documents.
Density-based algorithms [8] define the clusters as areas

of higher density than the remainder of the dataset. The
advantage of density-based algorithms is that they do not
need to specify the number of clusters in advance, and can
detect the outliers of the dataset. However, they have limi-
tations in handling high-dimensional data like text. Because
the feature space of high-dimensional data is usually sparse,
density-based algorithms have difficulty to distinguish high-
density regions from low-density regions [13].
A comparative study on model-based text clustering algo-

rithms can be found in [29]. The most widely used model-
based clustering method is the Gaussian Mixture Model (G-
MM) [19], which assumes that data points are generated
by a mixture of Gaussian distributions. However, the com-
plexity of GMM is too large for high-dimensional data like
text. Nigam et al. [16] proposed an EM-based algorithm for
the Dirichlet Multinomial Mixture model (DMM) for classi-
fication with both labeled and unlabeled documents. When
only unlabeled documents are provided, it turns out to be a
clustering algorithm.

In [27], we introduced a collapsed Gibbs Sampling algo-
rithm for the DMM model (GSDMM) for text clustering,
which can infer the number of clusters automatically as long
as the assumed maximum number of clusters is larger than
the true number of clusters. GSDMM assumes that there
are at most Kmax clusters in the corpus. In [27], we found
that GSDMM can achieve good performance as long as the
assumed maximum number of clusters Kmax is larger than
the true number of clusters. However, it is difficult to set
a proper maximum number of clusters for GSDMM as we
do not know the true number. As a result, we may have to
choose a really large Kmax to ensure safety which will re-
sult in the complexity of GSDMM to be large. In addition,
GSDMM randomly assigns the documents to Kmax clusters
during initialization, which will introduce noise into cluster-
ing. Because the documents in an initial cluster have high
probability of coming from different classes.

Topic models like LDA [5] and PLSA [12] are probabilistic
generative models that can model texts and identify latent
semantics underlying the text collection. In [14], the au-
thors investigated the performance of LDA and PLSA on
text clustering. They treat the topics found by topic models
as clusters and assign each document to the cluster with the
highest value in its topic proportion vector. Different from
LDA, we assume that each document is generated by only
one topic (cluster) and the words in the document are gen-



erated independently when the document’s cluster assign-
ment is known. We find that this model is more effective
for the text clustering task, and our extensive experimen-
tal study shows that our algorithm can achieve significantly
better performance than LDA on both long and short text
datasets.

7. CONCLUSION
In this paper, we propose a text clustering algorithm using

an online clustering scheme for initialization called FGSD-
MM+, which has low time and space complexity and can
detect the number of clusters automatically. Our exten-
sive experimental study shows that FGSDMM+ can achieve
better performance than three other clustering methods on
both short and long text datasets. We compared the speed
of FGSDMM+, FGSDMM, and GSDMM with different as-
sumed maximum number of clusters Kmax. We found that
the speed of GSDMM is approximately linear to the assumed
maximum number of clustersKmax, and the speed of FGSD-
MM+ gets almost stable when the assumed maximum num-
ber of clusters is larger than the true number of clusters.
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